Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 104(1): e3888, 2023 01.
Article in English | MEDLINE | ID: mdl-36208280

ABSTRACT

Lipid and fatty acid datasets are commonly used to assess the nutritional composition of organisms, trophic ecology, and ecosystem dynamics. Lipids and their fatty acid constituents are essential nutrients to all forms of life because they contribute to biological processes such as energy flow and metabolism. Assessment of total lipids in tissues of organisms provides information on energy allocation and life-history strategies and can be an indicator of nutritional condition. The analysis of an organism's fatty acids is a widely used technique for assessing nutrient and energy transfer, and dietary interactions in food webs. Although there have been many published regional studies that assessed lipid and fatty acid compositions, many only report the mean values of the most abundant fatty acids. There are limited individual records available for wider use in intercomparison or macro-scale studies. This dataset consists of 4856 records of individual and pooled samples of at least 470 different marine consumer species sampled from tropical, temperate, and polar regions around Australia and in the Southern, Indian, and Pacific Oceans from 1989 to 2018. This includes data for a diverse range of taxa (zooplankton, fish, cephalopods, chondrichthyans, and marine mammals), size ranges (0.02 cm to ~13 m), and that cover a broad range of trophic positions (2.0-4.6). When known, we provide a record of species name, date of sampling, sampling location, body size, relative (%) measurements of tissue-specific total lipid content and abundant fatty acids, and absolute content (mg 100 g-1 tissue) of eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic acid (DHA, 22:6n3) as important long-chain (≥C20 ) polyunsaturated omega-3 fatty acids. These records form a solid basis for comparative studies that will facilitate a broad understanding of the spatial and temporal distribution of marine lipids globally. The dataset also provides reference data for future dietary assessments of marine predators and model assessments of potential impacts of climate change on the availability of marine lipids and fatty acids. There are 480 data records within our data file for which the providers have requested that permission for reuse be granted, with the likely condition that they are included as a coauthor on the reporting of the dataset. Records with this condition are indicated by a "yes" under "Conditions_of_data_use" in Data S1: Marineconsumer_FAdata.csv (see Table 2 in Metadata S1 for more details). For all other data records marked as "No" under "Conditions_of_data_use," there are no copyright restrictions for research and/or teaching purposes. We request that users acknowledge use of the data in publications, research proposals, websites, and other outlets via formal citation of this work and original data sources as applicable.


Subject(s)
Ecosystem , Fatty Acids , Animals , Fatty Acids/analysis , Fatty Acids/metabolism , Food Chain , Fishes , Zooplankton , Mammals
2.
Ecology ; 102(3): e03265, 2021 03.
Article in English | MEDLINE | ID: mdl-33330981

ABSTRACT

Nitrogen and carbon stable isotope data sets are commonly used to assess complex population to ecosystem responses to natural or anthropogenic changes at regional to global spatial scales, and monthly to decadal timescales. Measured in the tissues of consumers, nitrogen isotopes (δ15 N) are primarily used to estimate trophic position while carbon isotopes (δ13 C) describe habitat associations and feeding pathways. Models of both δ15 N and δ13 C values and their associated variance can be used to estimate likely dietary contributions and niche width and provide inferences about consumer movement and migration. Stable isotope data have added utility when used in combination with other empirical data sets (e.g., stomach content, movement tracking, bioregionalization, contaminant, or fisheries data) and are increasingly relied upon in food web and ecosystem models. While numerous regional studies publish tables of mean δ15 N and δ13 C values, limited individual records have been made available for wider use. Such a deficiency has impeded full utility of the data, which otherwise would facilitate identification of macroscale patterns. The data provided here consist of 4,498 records of individuals of three tuna species, Thunnus alalunga, T. obesus, and T. albacares sampled from all major ocean basins from 2000 to 2015. For each individual tuna, we provide a record of the following: species name, sampling date, sampling location, tuna length, muscle bulk and baseline corrected δ15 N values, and muscle bulk and, where available, lipid corrected δ13 C values. We provide these individual records to support comparative studies and more robust modeling projects seeking to improve understanding of complex marine ecosystem dynamics and their responses to a changing environment. There are no copyright restrictions for research and/or teaching purposes. Users are requested to acknowledge their use of the data in publications, research proposals, websites, and other outlets following the citation instructions in Class III, Section B.

3.
Sci Data ; 7(1): 297, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901022

ABSTRACT

Zooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0-60°S, 110-160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels.


Subject(s)
Biomass , Zooplankton , Animals , Australia , Indian Ocean , Pacific Ocean
4.
Glob Chang Biol ; 26(2): 458-470, 2020 02.
Article in English | MEDLINE | ID: mdl-31578765

ABSTRACT

Considerable uncertainty remains over how increasing atmospheric CO2 and anthropogenic climate changes are affecting open-ocean marine ecosystems from phytoplankton to top predators. Biological time series data are thus urgently needed for the world's oceans. Here, we use the carbon stable isotope composition of tuna to provide a first insight into the existence of global trends in complex ecosystem dynamics and changes in the oceanic carbon cycle. From 2000 to 2015, considerable declines in δ13 C values of 0.8‰-2.5‰ were observed across three tuna species sampled globally, with more substantial changes in the Pacific Ocean compared to the Atlantic and Indian Oceans. Tuna recorded not only the Suess effect, that is, fossil fuel-derived and isotopically light carbon being incorporated into marine ecosystems, but also recorded profound changes at the base of marine food webs. We suggest a global shift in phytoplankton community structure, for example, a reduction in 13 C-rich phytoplankton such as diatoms, and/or a change in phytoplankton physiology during this period, although this does not rule out other concomitant changes at higher levels in the food webs. Our study establishes tuna δ13 C values as a candidate essential ocean variable to assess complex ecosystem responses to climate change at regional to global scales and over decadal timescales. Finally, this time series will be invaluable in calibrating and validating global earth system models to project changes in marine biota.


Subject(s)
Phytoplankton , Tuna , Animals , Carbon Isotopes , Ecosystem , Indian Ocean , Oceans and Seas , Pacific Ocean
5.
PLoS One ; 10(7): e0131598, 2015.
Article in English | MEDLINE | ID: mdl-26135308

ABSTRACT

Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.


Subject(s)
Fatty Acids/chemistry , Food Chain , Models, Biological , Temperature , Tuna/physiology , Algorithms , Animals , Biomass , Chlorophyll/chemistry , Chlorophyll A , Climate Change , Fatty Acids, Omega-3/chemistry , Muscles/chemistry , Oceanography , Pacific Ocean , Phytoplankton/chemistry , Seafood , Spatio-Temporal Analysis
6.
Oecologia ; 177(1): 85-95, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25376156

ABSTRACT

Fatty acids are a valuable tool in ecological studies because of the large number of unique structures synthesized. They provide versatile signatures that are being increasingly employed to delineate the transfer of dietary material through marine and terrestrial food webs. The standard procedure for determining fatty acids generally involves lipid extraction followed by methanolysis to produce methyl esters for analysis by gas chromatography. By directly transmethylating ~50 mg wet samples and adding an internal standard it was possible to greatly simplify the analytical methodology to enable rapid throughput of 20-40 fish tissue fatty acid analyses a day including instrumental analysis. This method was verified against the more traditional lipid methods using albacore tuna and great white shark muscle and liver samples, and it was shown to provide an estimate of sample dry mass, total lipid content, and a condition index. When large fatty acid data sets are generated in this way, multidimensional scaling, analysis of similarities, and similarity of percentages analysis can be used to define trophic connections among samples and to quantify them. These routines were used on albacore and skipjack tuna fatty acid data obtained by direct methylation coupled with literature values for krill. There were clear differences in fatty acid profiles among the species as well as spatial differences among albacore tuna sampled from different locations.


Subject(s)
Fatty Acids/analysis , Food Chain , Liver/metabolism , Muscle, Skeletal/metabolism , Sharks , Tuna , Animals , Chromatography, Gas , Diet , Euphausiacea , Feeding Behavior , Lipids , Predatory Behavior , Species Specificity
7.
PLoS One ; 9(5): e97877, 2014.
Article in English | MEDLINE | ID: mdl-24871223

ABSTRACT

Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5-3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51-81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g-1 dm) and liver (34.1±3.2 kJ g-1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.


Subject(s)
Energy Metabolism/physiology , Fatty Acids/analysis , Feeding Behavior/physiology , Food Chain , Lipids/analysis , Sharks/physiology , Animals , Liver/chemistry , Multivariate Analysis , Muscle, Skeletal/chemistry , New South Wales , Pacific Ocean , South Australia , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...